a) Aratati ca, daca $f:\mathbb{R}\to\mathbb{R}$ este o functie, astfel incat functiile $g:\mathbb{R}\to\mathbb{R}$, $g(x)=f(x)+f(2x)$, si $h:\mathbb{R}\to\mathbb{R}$, $h(x)=f(x)+f(4x)$, sunt continue pe $\mathbb{R}$, atunci si $f$ este continua pe $\mathbb{R}$.
b) Dati un exemplu de functie discontinua $f:\mathbb{R}\to\mathbb{R}$, care are urmatoarea proprietate: exista un interval $I\subset \mathbb{R}$, astfel incat, oricare ar fi $a$ in $I$, functia $g_{a}:\mathbb{R}\to\mathbb{R}$, $g_{a}(x)=f(x)+f(ax)$, este continua pe $\mathbb{R}$.
OJM 2014, Problema 2
-
- Mesaje: 216
- Membru din: Mar Iul 05, 2011 8:48 pm
Mergi la
- Concurs de Matematica MathTime
- Problema zilei
- Discutii pe clase
- ↳ Clasa a V-a
- ↳ Teorie
- ↳ Probleme
- ↳ Clasa a VI-a
- ↳ Teorie
- ↳ Probleme
- ↳ Clasa a VII-a
- ↳ Teorie
- ↳ Probleme
- ↳ Clasa a VIII-a
- ↳ Teorie
- ↳ Probleme
- ↳ Clasa a IX-a
- ↳ Teorie
- ↳ Probleme
- ↳ Clasa a X-a
- ↳ Teorie
- ↳ Probleme
- ↳ Clasa a XI-a
- ↳ Teorie
- ↳ Probleme
- ↳ Clasa a XII-a
- ↳ Teorie
- ↳ Probleme
- Juniori II
- ↳ Algebra
- ↳ Combinatorica
- ↳ Teoria Numerelor
- ↳ Inegalitati
- ↳ Geometrie
- Juniori
- ↳ Algebra
- ↳ Combinatorica
- ↳ Teoria Numerelor
- ↳ Inegalitati
- ↳ Geometrie
- EGMO
- ↳ Algebra
- ↳ Combinatorica
- ↳ Teoria Numerelor
- ↳ Inegalitati
- ↳ Geometrie
- Seniori
- ↳ Algebra
- ↳ Combinatorica
- ↳ Teoria Numerelor
- ↳ Inegalitati
- ↳ Geometrie
- Probleme marca "Panaitopol"
- Tabara MathTime
- ↳ Juniori
- ↳ Seniori
- Teme pentru cercurile de elevi
- Olimpiada de Matematica
- ↳ Judeteana
- ↳ Nationala
- Resurse
- ↳ Olimpiada Internationala de Matematica
- ↳ Olimpiada Balcanica de Matematica
- ↳ Teste de Selectie Seniori
- ↳ Olimpiada Balcanica pentru Juniori
- ↳ Teste de Selectie Juniori
- ↳ Olimpiada Nationala de Matematica
- ↳ Olimpiade Locale
- ↳ Alte concursuri
- Chat de voie
- Recenzii la carti
- Revista
- LaTeX
- In memoriam