Fie $f:\mathbb{R}\to\mathbb{R}$ o functie. Demonstrati ca $\displaystyle \lim_{n\to\infty}\left(f\left(\frac{1}{\ln n}\right)+f\left(\frac{1}{2\ln n}\right)+\ldots+f\left(\frac{1}{n\ln n}\right)\right)=\lim_{x\to0}\frac{f\left(x\right)}{x}$ in ipoteza ca limita din dreapta exista, finita sau nu.
C. Mortici, OLM Dambovita, 2011
Limita de functie ca limita de sir
-
- Mesaje: 151
- Membru din: Mie Noi 03, 2010 10:05 am
Mergi la
- Concurs de Matematica MathTime
- Problema zilei
- Discutii pe clase
- ↳ Clasa a V-a
- ↳ Teorie
- ↳ Probleme
- ↳ Clasa a VI-a
- ↳ Teorie
- ↳ Probleme
- ↳ Clasa a VII-a
- ↳ Teorie
- ↳ Probleme
- ↳ Clasa a VIII-a
- ↳ Teorie
- ↳ Probleme
- ↳ Clasa a IX-a
- ↳ Teorie
- ↳ Probleme
- ↳ Clasa a X-a
- ↳ Teorie
- ↳ Probleme
- ↳ Clasa a XI-a
- ↳ Teorie
- ↳ Probleme
- ↳ Clasa a XII-a
- ↳ Teorie
- ↳ Probleme
- Juniori II
- ↳ Algebra
- ↳ Combinatorica
- ↳ Teoria Numerelor
- ↳ Inegalitati
- ↳ Geometrie
- Juniori
- ↳ Algebra
- ↳ Combinatorica
- ↳ Teoria Numerelor
- ↳ Inegalitati
- ↳ Geometrie
- EGMO
- ↳ Algebra
- ↳ Combinatorica
- ↳ Teoria Numerelor
- ↳ Inegalitati
- ↳ Geometrie
- Seniori
- ↳ Algebra
- ↳ Combinatorica
- ↳ Teoria Numerelor
- ↳ Inegalitati
- ↳ Geometrie
- Probleme marca "Panaitopol"
- Tabara MathTime
- ↳ Juniori
- ↳ Seniori
- Teme pentru cercurile de elevi
- Olimpiada de Matematica
- ↳ Judeteana
- ↳ Nationala
- Resurse
- ↳ Olimpiada Internationala de Matematica
- ↳ Olimpiada Balcanica de Matematica
- ↳ Teste de Selectie Seniori
- ↳ Olimpiada Balcanica pentru Juniori
- ↳ Teste de Selectie Juniori
- ↳ Olimpiada Nationala de Matematica
- ↳ Olimpiade Locale
- ↳ Alte concursuri
- Chat de voie
- Recenzii la carti
- Revista
- LaTeX
- In memoriam