Fie $K$ mijlocul laturii $[AB]$ a triunghiului $ABC;$ iar $L\in[AC]$ si $M\in[BC]$ doua puncte, astfel incat sa avem: $\widehat{CLK}\equiv\widehat{CMK}.$ Aratati ca perpendicularele ridicate in punctele $K,\,L$ si $M$ in mod respectiv pe laturile $[AB],\,[AC]$ si $[BC],$ sunt concurente intr-un punct $P.$
Referitor la triunghiurile ortologice, vedeti topicul: http://forum.gil.ro/viewtopic.php?f=37&t=3816
Middle European MO-2012, Triunghiuri ortologice.
-
- Mesaje: 1493
- Membru din: Mar Oct 26, 2010 9:21 pm
- Localitate: ORADEA
- Laurențiu Ploscaru
- Mesaje: 1237
- Membru din: Mie Mai 04, 2011 5:42 pm
- Localitate: Călimănești
- Contact:
Re: Middle European MO-2012, Triunghiuri ortologice.
People are strange when you're a stranger,
Faces look ugly when you're alone.
Women seem wicked when you're unwanted,
Streets are uneven when you're down.
Faces look ugly when you're alone.
Women seem wicked when you're unwanted,
Streets are uneven when you're down.
-
- Mesaje: 1493
- Membru din: Mar Oct 26, 2010 9:21 pm
- Localitate: ORADEA
Re: Middle European MO-2011, Triunghiuri ortologice.
Solutia mea o gasiti in attachment!
- Fişiere ataşate
-
- Midle European MO-2012 (Sol_Miculita).zip
- (58.89 KiB) Descărcat de 163 ori